organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Bao Song,^a Ming-Yu Teng,^a Yu Dong,^a Chun-An Ma^a* and Jie Sun^b

^aState Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ^bShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Correspondence e-mail: qbsong6@163.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.047 wR factor = 0.126 Data-to-parameter ratio = 6.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of the title compound, $C_4H_6O_6$ · H_2O , displays a two-dimensional network formed by $O-H\cdots O$ hydrogen bonds.

(25,35)-2,3-Dihydroxysuccinic acid monohydrate

Received 20 May 2006 Accepted 8 June 2006

Comment

D-Tartaric acid is an important material in biochemistry and racemic resolution. The structure of racemic tartaric acid monohydrate was first determined and reported by Stern & Beevers (1950) and Parry (1951), and redetermined by Nie *et al.* (2001). The structure of D-tartaric acid tetrahydrate was determined by Okaya *et al.* (1966). However, D-tartaric acid monohydrate, (I), has not been reported until now.

In the crystal structure of (I), the molecules are linked by $O-H\cdots O$ hydrogen bonds (Table 1 and Fig. 2).

Experimental

D-Tartaric acid (15.0 g, 0.10 mol) in water (9.0 ml) was heated to 343 K until the acid dissolved; the solution was then cooled to room temperature to give colourless prismatic crystals of (I) (5.5 g) after 5 d.

Crystal data	
$C_4H_6O_6 \cdot H_2O$	Z = 4
$M_r = 168.10$	$D_x = 1.691 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 7.6377 (7) Å	$\mu = 0.17 \text{ mm}^{-1}$
b = 7.8268 (7) Å	T = 293 (2) K
c = 11.0427 (10) Å	Prism, colourless
$V = 660.12 (10) \text{ Å}^3$	$0.51 \times 0.44 \times 0.43 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	3853 measured reflections
diffractometer	852 independent reflections
φ and ω scans	818 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.088$
(SADABS; Bruker, 2000)	$\theta_{\rm max} = 27.0^{\circ}$
$T_{\min} = 0.779, T_{\max} = 1.000$	
(expected range = $0.724-0.930$)	

© 2006 International Union of Crystallography All rights reserved

The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0774P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.047$	+ 0.2665P]
$wR(F^2) = 0.126$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
852 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
129 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 1.13 (8)
refinement	

Table 1	1
---------	---

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O7−H7 <i>B</i> ···O1	0.92 (2)	2.04 (3)	2.882 (3)	151 (5)
$O7-H7A\cdots O2^{i}$	0.93 (2)	2.43 (4)	3.120 (4)	131 (4)
$O7-H7A\cdots O1^{ii}$	0.93(2)	2.13 (4)	2.848 (3)	133 (4)
O3−H5···O6 ⁱⁱⁱ	0.90(2)	1.88 (2)	2.737 (3)	158 (4)
$O4-H4\cdots O5^{iv}$	0.89(2)	1.97 (2)	2.808 (3)	156 (4)
$O2-H1$ ··· $O6^{v}$	0.90(2)	1.98 (7)	2.549 (3)	120 (6)
$O6-H6\cdots O2^{vi}$	0.82	1.74	2.549 (3)	169

Symmetry codes: (i) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z; (vi) x - 1, y, z.

Atom H6 was placed in a calculated position and allowed to ride on its parent atom at an O–H distance of 0.82 Å. Other H atoms were refined freely [O-H = 0.89 (2)-0.93 (2) Å and C-H = 0.88 (4)-0.99 (4) Å].

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT*; data reduction: *SAINT* (Bruker, 2000) and *SHELXTL* (Bruker,

Figure 2 The $O-H\cdots O$ hydrogen bonds (dashed lines) in (I).

2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

This work was supported by the State Key Laboratory Breeding Base of Green Chemistry–Synthesis Technology, Zhejiang University of Technology.

References

- Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nie, J.-J., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2001). Acta Cryst. E57, 0428–0429.
- Okaya, Y., Stemple, N. R. & Kay, M. I. (1966). Acta Cryst. 21, 237-243.
- Parry, G. S. (1951). Acta Cryst. 4, 131-138.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stern, F. & Beevers, C. A. (1950). Acta Cryst. 3, 341-346.